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Abstract. The interaction of a nonrelativistic charged-particle beam travelling parallel to the
surface of a sharp-edged dielectric wedge is analysed. The general expressions for the excitation
probability are obtained for a beam moving along the direction of a symmetry axis, either outside
or inside the dielectric wedge. The dielectric function of the medium is assumed to be isotropic,
and numerical results are given for the materials of experimental interest.

1. Introduction

The tradition of analysing material targets from the energy-loss spectroscopy of charged
particles scattered through or near a scatterer has continued to enrich physics over the past
few decades. Applications have been found in nuclear and particle physics, atomic and
molecular physics, and in condensed-matter physics. Recently, biological physics has benefited
as well, particularly from the use of electron energy-loss spectroscopy (EELS) performed
using scanning-transmission-electron microscopes (STEM). Using a STEM one can obtain
information on the size, shape, composition, and location of isolated particulates embedded
in a host material (composite) and thus obtain three-dimensional chemical maps with high
resolution (Chenet al 1986).

In a typical STEM configuration, a well-focused 0.5 nm probe of 50–100 keV electrons
provides a high-resolution transmission scanning image for samples with complex structures.
It also yields, from selected regions of the structure, x-ray emission spectra and electron
energy-loss spectra. Quantitative theories have been developed to analyse the experimental
energy-loss spectra in some simple cases.

Solutions, within the classical dielectric theory, have been worked out for a number of
cases involving planar interfaces (Echenique and Pendry 1975), spheres (Ferrel and Echenique
1985, Echeniqueet al 1987), cylinders (Walsh 1989, Zabalaet al 1989), spheroids (Illman
et al 1988), and parabolically shaped wedges (Garcia-Molinaet al 1985). For these simple
geometries, experimental results show that dielectric excitation theory is capable of predicting
energy-loss spectra, allowing a fully consistent dielectric characterization of an interface or a
small particle (Walls and Howie 1989, Rivacobaet al 1992).

In this paper we focus our attention on the calculation of the excitation probability for a
point charge particle moving parallel to the sharp-edged dielectric wedge whose boundary
is formed by the intersection of two semi-infinite planes making an interior angle ofα.
Our interest is explained by some experiments that were reported by Marks (1982), Cowley
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(1982a, b), and Wheatleyet al (1983). The targets (MgO, NiO, Al2O3, etc) bombarded in the
experiments are of cubic symmetry (i.e. have sharp-edged form), about 20–200 nm in size, and
the electron beam is oriented along the principal crystallographic directions. Marks (1982)
measured the spectra of energy losses of electron beams interacting with small crystallites of
MgO. The calculations for the excitation probability were done considering the crystallites
as semi-infinite surfaces related to electron beams. Using the classical theory of impact-
parameter-dependent energy losses for planar interfaces, Wheatleyet al (1983) applied the
results for planar geometry to spheres while resolving the force in the track direction. Garcia-
Molina et al (1985) calculated the energy-loss function and the excitation probability of the
wedge modes due to a point-like electron beam moving parallel to the dielectric wedge surface
with a parabolic-cylinder boundary.

Here we shall calculate the excitation probability of sharp-edged modes, due to an electron
beam passing parallel to the dielectric wedge with a local, but otherwise arbitrary, dielectric
function ε(ω). We shall limit our calculations to the nonretarded limit. The limiting cases
for the potential and excitation probability are shown. First, from exact expressions for the
excitation probability we derive the expressions for planar geometry in the limiting case of
α = π . Second, in the appendix we also show that in the static limit (u → 0, whereu
is the velocity of the particle) from our results for the potential follows the expression for a
conducting sharp-edged wedge (ε → ∞) (Landau and Lifshitz 1982). In section 3 we have
utilized available bulk optical data (Roessler and Walker 1967) to calculate the differential
energy-loss probability for MgO. The theoretical predictions are compared with experimental
data, and it is shown that the main features of the experiments reported by Marks (1982) can be
explained by the theory. Also, our results are compared with those for a parabolically shaped
wedge (Garcia-Molinaet al 1985). In section 4 we present our conclusions and comments on
the results, and discuss opportunities for possible future work.

2. Energy loss and excitation probability

Take dielectric wedges whose boundaries are formed by the intersection of two semi-infinite
planes making an interior angle ofα infinite in thez-direction. Let in the cylindrical system of
coordinatesρ, θ , z the azimuthal angleθ be measured from one of wedge sides. We consider
two media filling the spaces−∞ < z < +∞, 0 6 θ 6 α, α 6 θ 6 2π , and characterized
by isotropic dielectric functionsε1(ω) andε2(ω), respectively (see figure 1). The incident
charged particle with the chargeq moves with a velocityu directed along thez-axis and has
the following coordinates:ρ = a, θ = γ (γ < α), z = ut .
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�
	
� Figure 1. Dielectric wedges filling the space−∞ < z <∞,

0 < θ < α, α < θ < 2π , and characterized by isotropic
dielectric functionsε1(ω) andε2(ω), respectively.

The study of the electrostatic edge modes along a sharp-edged wedge is due to Dobrzynsky
and Maradudin (1972), who solved Laplace’s equation in the appropriate coordinate system.
Davis (1976) has considered the electrostatic modes of a hyperbolic cylinder and has concluded
that the results in the work of Dobrzynsky and Maradudin (1972) are associated with the
sharpness of the edge of the wedge. Here we shall only give the main steps in the derivation
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of the electrostatic potential originated as a result of an electron beam travelling along the
wedge surfaces.

We solve Poisson’s equation for the potential

∇2(ε̂ϕ) = −4πq

a
δ(ρ − a)δ(θ − γ )δ(z− ut) (1)

where the charge density associated with an electron beam, which is described classically by a
δ-function, and̂ε is the operator of dielectric permeability of the medium (Landau and Lifshitz
1982).

It is convenient to work in Fourier space:

ϕ(ρ, θ, ξ) =
∫ +∞

−∞
dω exp(iωξ/u)ϕω(ρ, θ) (2)

whereξ = z−ut . Then, Poisson’s equation becomes, in cylindrical coordinates, withϕω(ρ, θ),(
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂θ2
− ω

2

u2

)
ϕω(ρ, θ) = − 2q

auε(ω)
δ(ρ − a)δ(θ − γ ). (3)

The solutions for the electrostatic potential in the regions 06 θ 6 α andα 6 θ 6 2π are
respectively

ϕω(ρ, θ) = q

π2u

∫ +∞

−∞
dµ Kiµ(ka)Kiµ(kρ)

×


1

ε1(ω)
{cosh[µ(π − |θ − γ |)] + ψ1ω(µ, θ)} 06 θ 6 α

1

ε2(ω)
ψ2ω(µ, θ) α 6 θ 6 2π

(4)

whereKν(x) is a modified Bessel function of orderν = iµ, k = |ω|/u,

ψ1ω(µ, θ) = Aω(µ) cosh(µθ) +Bω(µ) sinh(µθ)

ψ2ω(µ, θ) = Cω(µ) cosh(µθ) +Dω(µ) sinh(µθ).
(5)

The first term in the large bracket of equation (4) corresponds to the potential of the
particle in the unbounded medium with dielectric functionε1(ω) (a particular solution of the
inhomogeneous equation (3)). The other terms in equation (4) correspond to the potential
generated due to the existence of the interfaces (solutions of the homogeneous equation (3) or
Laplace’s equation (Dobrzynsky and Maradudin 1972)).

The coefficientsAω(µ), Bω(µ), Cω(µ) andDω(µ) are determined by the boundary
conditions. The potential must be continuous atθ = 0 andθ = α, and the normal component
of the Fourier amplitude of the electric displacement vector must be continuous atθ = 0 and
θ = α. From equation (4) we can obtain the following set of equations for coefficientsAω(µ),
Bω(µ), Cω(µ) andDω(µ):

1

ε1(ω)

[
cosh[µ(π + γ − α)] + Aω(µ) cosh(µα) +Bω(µ) sinh(µα)

]
= 1

ε2(ω)
[Cω(µ) cosh(µα) +Dω(µ) sinh(µα)] (6)

1

ε1(ω)

[
cosh[µ(π − γ )] + Aω(µ)

] = 1

ε2(ω)
[Cω(µ) cosh(2πµ) +Dω(µ) sinh(2πµ)] (7)

−sinh[µ(π + γ − α)] + Aω(µ) sinh(µα) +Bω(µ) cosh(µα)

= Cω(µ) sinh(µα) +Dω(µ) cosh(µα) (8)

sinh[µ(π − γ )] + Bω(µ) = Cω(µ) sinh(2πµ) +Dω(µ) cosh(2πµ). (9)
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OnlyAω(µ) andBω(µ) are of interest as they represent the coefficients of the homogeneous
portion of the potential and thus are needed to obtain the self-energy and stopping power.

We seek the dissipative component of the force acting on the beam moving near the wedge
surface. We neglect quantum recoil effects and assume thatu is constant (i.e., the external
charge acts as an infinite source of energy and momentum). The negative of the dissipative
component of the induced force is the specific energy loss (Ritchie 1957):

−dW

dz
=
∫ ∞

0
dω h̄ωP (ω) (10)

where

P(ω) = 2q2

πh̄u2

{
Im
−1

ε1(ω)
ln
kcu

ω
+

2

π

∫ ∞
0

dµ K2
iµ

(
ω

u
a

)
sinh[µ(2π − α)]Qω(µ)

}
(11)

is the excitation probability,

Qω(µ) = −Im

{
ηs(ω)

ε1(ω)

ηs(ω) sinh[µ(π − α)] + sinh(πµ) cosh[µ(2γ − α)]
sinh2(πµ)− η2

s (ω) sinh2[µ(π − α)]

}
(12)

where

ηs(ω) = ε1(ω)− ε2(ω)

ε1(ω) + ε2(ω)
(13)

is the surface response function for plane geometry, andkc = 2mu/h̄ is a cut-off wavenumber
(Brandtet al 1974). Note that this definition ofkc is valid when the charged-particle beam
is travelling sufficiently fast, i.e.u > e2/h̄ ' 2.2× 108 cm s−1. As expected, the excitation
probability in equation (11) contains terms corresponding to the excitation both of the bulk
(the term Im(−1/ε1)) and of the surface modes of the wedge. Therefore, if one wishes to
probe the surface excitation field, without interference from the bulk modes, the probe has to
be kept external to the wedge, as was done in the experiments (Marks 1982, Cowley 1982a, b,
Wheatleyet al1983). One can calculate the specific energy loss from equations (11) and (12).

The dispersion relation for the surface modes is the result of equating the denominator
in equation (12) to zero. As follows from expression (12), there are two types of surface
mode. The frequency of the first one (the so-called even mode), in the case ofε2(ω) = 1,
ε1(ω) = ε(ω), is determined from the following dispersion equation:

ε(ω) = − tanh[µ(π − α/2)]
tanh(µα/2)

. (14)

The electric potential in this surface mode is symmetric as related to the symmetry plane of
the wedges (the planeθ = α/2) (Dobrzynsky and Maradudin 1972). The frequency of the
second one (the so-called odd mode) is determined from the following dispersion equation:

ε(ω) = − tanh(µα/2)

tanh[µ(π − α/2)] . (15)

The electric potential in this type of surface mode is antisymmetric as related to the symmetry
plane of the wedges (Dobrzynsky and Maradudin 1972). Whenε2(ω) = ε(ω), ε1(ω) = 1, the
above-mentioned dispersion equations for the odd and even surface modes are exchanged.

We consider first the case of a beam travelling external to the wedge, in vacuum (ε1(ω) = 1,
ε2(ω) = ε(ω)). Then from equations (11)–(13) we have

P(ω) = 4q2

π2h̄u2

∫ ∞
0

dµ K2
iµ

(
ω

u
a

)
sinh[µ(2π − α)Qω(µ) (16)

Qω(µ) = Im

{
η(ω)

η(ω) sinh[µ(α − π)] − sinh(πµ) cosh[µ(2γ − α)]
η2(ω) sinh2[µ(α − π)] − sinh2(πµ)

}
(17)



Surface-mode contributions to an excitation probability 7427

where

η(ω) = ε(ω)− 1

ε(ω) + 1
. (18)

We consider now the case of a beam travelling through the wedge, but parallel to the edge
(i.e. ε2(ω) = 1, ε1(ω) = ε(ω)):

P(ω) = 2q2

πh̄u2

{
Im
−1

ε(ω)
ln
kcu

ω
+

2

π

∫ ∞
0

dµ K2
iµ

(
ω

u
a

)
sinh[µ(2π − α)]Qω(µ)

}
(19)

Qω(µ) = Im

{
η(ω)

ε(ω)

η(ω) sinh[µ(π − α)] + sinh(πµ) cosh[µ(2γ − α)]
η2(ω) sinh2[µ(π − α)] − sinh2(πµ)

}
. (20)

Now both terms in equation (19) contribute to the specific energy loss of the beam travelling
through the wedge.

It is instructive to derive from equations (16) and (19) the excitation probability quoted by
Marks (1982) for an electron beam travelling parallel to a semi-infinite dielectric occupying
the region 06 θ 6 π (or π 6 θ 6 2π ), and at a distanced from its surface. Substituting
α = π in the equations (16) and (19) we find

P(ω) = 4q2

π2h̄u2
Im[η(ω)]

∫ ∞
0

dµ K2
iµ

(
ω

u
a

)
cosh[µ(π − 2γ )] (21)

whenε1(ω) = 1, ε2(ω) = ε(ω), and

P(ω) = 2q2

πh̄u2

{
Im
−1

ε(ω)
ln
kcu

ω
− 2

π
Im

[
η(ω)

ε(ω)

] ∫ ∞
0

dµ K2
iµ

(
ω

u
a

)
cosh[µ(π − 2γ )]

}
(22)

whenε2(ω) = 1, ε1(ω) = ε(ω). For calculation of the integral in equations (21) and (22)
we have used the following expression for the modified Bessel function (Bateman and Erdelyi
1977):

K2
iµ(x) =

π

sinh(πµ)

∫ ∞
0

dt sin(2µt)J0(2x sinht) (23)

whereJ0(x) is the Bessel function of zeroth order. By using equation (23) we finally find

P(ω) = 2q2

πh̄u2
Im

[
ε(ω)− 1

ε(ω) + 1

]
K0

(
2
ω

u
d

)
(24)

whenε1(ω) = 1, ε2(ω) = ε(ω), and

P(ω) = 2q2

πh̄u2

{
Im
−1

ε(ω)
ln
kcu

ω
+ Im

[
1− ε(ω)

ε(ω)(1 + ε(ω))

]
K0

(
2
ω

u
d

)}
(25)

whenε2(ω) = 1, ε1(ω) = ε(ω), d = a sinγ is the distance of the particle from the surface,
K0 is the modified Bessel function of zeroth order.

Dobrzynsky and Maradudin (1972) showed that in the limit of large values ofµ or in the
case ofα → π the dispersion relation of the edge modes, equations (14) and (15), coincides
with the dispersion relation (ε = −1) for surface plasmon modes bound to the plane interface
between a dielectric medium and the vacuum. Consequently, the surface energy-loss function
in equations (16) and (19) reduces to the surface energy-loss function in equations (24) and (25),
Im[(ε − 1)/(ε + 1)], in the limit α→ π .
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3. Analysis and comparison with other works

We have evaluated the excitation probabilities in equations (16)–(19) with the complex
dielectric function for MgO taken from experimental data (Roessler and Walker 1967), and
for an 80 keV electron beam as in the experiment carried out by Marks (1982).

We first briefly recall the principal results of the investigations carried out by Marks (1982)
and Cowley (1982a, b).

(i) The overall intensity in the EELS spectrum (and therefore also the intensity of a given
peak) decreases when the electron path goes from a lateral surface to the edge of the crystal
(Marks 1982) (see also figures 2–8 below).

(ii) For electron paths along a lateral surface, the intensity of a given peak first slowly increases
and then rapidly decreases exponentially as the beam–surface distance goes from inside
to outside the wedge (Marks 1982) (see also figure 9 below).

(iii) For electron paths both parallel to the lateral surface and along the edge, a surface plasmon
at 18 eV was observed, together with a strong enhancement of the low frequencies (in
comparison with the spectrum for electron paths through the bulk; see figure 8 below).
The 18 eV peak was attributed by Marks (1982) to a genuine surface resonance, in contrast
to Cowley’s (1982a, b) interpretation of it as due to transition radiation.

Now we are giving the numerical analyses of the expressions (16) and (19) for the excitation
probability for MgO. We have utilized available bulk optical data (Roessler and Walker 1967)
to calculate the differential energy-loss probability. Figures 2–6 show the excitation probability
for a beam travelling in vacuum parallel to the surface of the sharp-edged wedge at various
wedge interior and beam orientation anglesα∗ = 2π − α andγ , at a distance from the edge
of a = 2 nm. In figures 2–4 the angleα∗ is obtuse, while in figure 5 the angleα∗ is acute and
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Figure 2. The excitation probability of surface modes, equation (16), for an electron beam travelling
in the vacuum parallel to the surface of the wedge, at a distance ofa = 2 nm from the edge. The
interior angle of the wedge is obtuse (α = π/4 orα∗ = 7π/4). The solid, dashed, and dotted lines
correspond to the three positions of the beamγ = π/24 ,γ = π/12, andγ = π/8, respectively.
The electron beam energy is 80 keV.
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Figure 3. As figure 2, but hereα = 3π/4 (or α∗ = 5π/4). The solid, dashed, and dotted lines
correspond to the three positions of the beamγ = π/8, γ = π/4, andγ = 3π/8, respectively.
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Figure 4. As figure 2, but hereα = 5π/4 (or α∗ = 3π/4). The solid, dashed, and dotted lines
correspond to the three positions of the beamγ = 5π/24,γ = 5π/12, andγ = 5π/8, respectively.

in this case the dielectric wedge is well defined. Note that as the angleα increases (the angle
α∗ decreases) and the wedge becomes well defined, the maximum intensity of the excitation
probability shifts from high values ofω to the low-plasmon-energy region. Also the intensity
of a given peak increases when the electron beam path approaches from the symmetry plane
of the wedge to the wedge lateral surface.

Figure 6 shows the excitation probability as a function of wedge interior angleα for
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Figure 5. As figure 2, but hereα = 7π/4 (or α∗ = π/4, i.e. the wedge is acute-angled and
well defined). The solid, dashed, and dotted lines correspond to the three positions of the beam
γ = 7π/24,γ = 7π/12, andγ = 7π/8, respectively.
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Figure 6. The excitation probability of a given surface modeω = 13.6 eV as a function ofα
(in radians) for an electron beam travelling in the vacuum parallel to the surface of the wedge at
a distance ofa = 2 nm from the edge. The solid lines correspond to the varying beam position
angles (γ = α/2, γ = α/4, γ = α/6, andγ = α/10, respectively). The dotted and dashed lines
correspond to the fixed values of beam position anglesγ = 8◦ andγ = π/2, respectively. The
electron beam energy is 80 keV.

a = 2 nm andω = 13.6 eV. The solid lines correspond to the cases in which the beam position
angleγ is changed with increasing ofα (the following four values for angleγ are considered:
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γ = α/2, γ = α/4, γ = α/6, andγ = α/10). The dotted and dashed lines correspond to the
case in which the electron beam position angle is fixed withγ = 8◦ andγ = π/2, respectively.
From this figure it follows that excitation probability of a given mode for all curves decreases
rapidly after the value ofα ' 3π/2' 4.5 rad.

The resonance atω ∼ 18 eV in figures 3–5 and in the solid curve of figure 7 was clearly
observed in the experiments (Marks 1982, Cowley 1982a, b), and is not so distinctly apparent
in the predictions for the semi-infinite model of the wedge (Garcia-Molinaet al 1985, Marks
1982) (see also the dotted curve in figure 7). Also this resonance is absent in the case of very
large values of the wedge interior angleα∗ (see figure 2). Cowley (1982a, b) attributed this
∼18 eV mode to transition radiation, but its origin as a genuine surface resonance is clear from
the model calculations for the parabolically shaped wedge (Garcia-Molinaet al1985) or from
the present calculations for a sharp-edged wedge.

Figure 7 shows the excitation probability for a beam travelling parallel to the edge of
the wedge and in front of it, at a distance ofa = 2 nm. The solid curve corresponds to a
well-defined wedge (α = 11π/6 or α∗ = π/6), for an angleγ = 11π/12, and the dotted
curve is the prediction for a semi-infinite medium. This latter case, which has been reduced
by a factor of 5, is very similar to the prediction for a nearly flat parabolically shaped wedge
(Garcia-Molinaet al 1985).

For a wedge boundary defined byα = 11π/6, figure 8 shows a comparison between
the excitation probabilities of the wedge when the electron beam passes in front of the edge
(γ = 11π/12) (the dashed curve, which is the same as the solid curve in figure 7) or along one
of its lateral surfaces (solid line). In the first casea = 2 nm; in the second onea ' 20.1 nm
(the beam distance to the edge is taken to be 20 nm and thereforeγ ' 0.1). Also shown in
figure 8 is the excitation probability (reduced by a factor of 40) for a beam travelling through
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Figure 7. The excitation probability of surface modes, equation (16), for an electron beam travelling
in the vacuum parallel to the surface of the wedge and in front of it, at a distance ofa = 2 nm from
the edge. The solid line corresponds to the well-defined wedge (α = 11π/6 orα∗ = π/6) with the
beam position angleγ = 11π/12; the dotted line corresponds to the semi-infinite wedge (α = π ,
γ = π/2). In the latter case the probability has been divided by a factor of 5. The electron beam
energy is 80 keV.
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Figure 8. Excitation probabilities of surface and bulk modes, equations (16) and (19), for an
electron beam travelling in the vacuum along the edge of the well-defined wedge (α = 11π/6 or
α∗ = π/6), at a distance of 2 nm from the edge and with angular positionγ = 11π/12 (dashed
line). This curve is same as the solid curve in figure 7; along a lateral surface, at a distance of
2 nm from it and in this caseα = 11π/6 (α∗ = π/6), a ' 20.1 nm (γ ' 0.1) (solid line); and the
dotted line through the bulk of the wedge (equation (19)), along the symmetry plane (α = π/6,
γ = π/12) and at a distance ofa = 20 nm from the edge. The spectrum shown by the dotted curve
has been divided by a factor of 40. The electron beam energy is 80 keV.

the bulk of the wedge (α = π/6), along its symmetry plane (dotted line), and at a distance
20 nm from its edge. The results in figure 8 may be compared with the experimental findings
in figure 2 of Marks (1982). The details of the experiment are reproduced by our calculations.
For instance, in the beam–lateral surface interaction spectrum, the intensity of the∼18 eV peak
is greater than the intensity of the∼13 eV peak. Also, the∼18 eV peak in this spectrum shifts
to∼22 eV in the bulk spectrum. The bulk plasmon for MgO is located at∼22 eV (Roessler
and Walker 1967), as seen in figure 8. Note that for calculation of bulk energy losses we have
used the cut-off wavenumberkc = 2mu/h̄ (Brandtet al1974) which is much greater than that
used in other works (kc ∼ 0.1 nm−1) (Illman et al 1988, Garcia-Molinaet al 1985, Marks
1982).

As mentioned in (ii) above, Marks (1982) also investigated the excitation probability of the
wedge for electron beam positions ranging from∼10 nm with respect to the wedge surface, but
inside the wedge, up to∼10 nm outside the wedge surface. The beam path in the experiment
was far from the edge of the wedge, and the dimensions of the cubic crystal were∼100 nm.
We have evaluated the corresponding expressions, (16) and (19), for the wedge interior angle
π/3 and for beam distances from the edge>50 nm. The results are shown in figure 9. In
agreement with the experimental results (figure 3 in the work of Marks (1982); see also point
(ii) above), the excitation probability decays exponentially with distance, the slope becoming
larger with increasing energy valueω. The relative intensities of the different curves are also
in agreement with the experimental results, the curve forω = 10 eV crossing the other curves
shown in figure 9. In the experiment the transition from inside to outside the wedge is broader
than figure 9 shows. One should note, however, that our calculations were done for a point-
like charged-particle beam, whereas the experimental value of the beam size was rather large,
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Figure 9. Excitation probabilities, for given modesω (in eV), equations (16) and (19), for electron
beam paths at a varying distanceD (in nm) from the lateral surface of the wedge. The beam paths
are far away from the edge (>50 nm), and range from inside (D < 0) to outside (D > 0) the
wedge. The wedge interior angle in both cases isπ/3. The electron beam energy is 80 keV.

∼2 nm. We recall also that the spectrometer resolution in Marks’s (1982) experiment is 3 eV.
One of the most easily controlled variables affecting the excitation probability is the

incident-beam energy. It is clearly of practical interest to determine the optimum incident
energy which will elicit the greatest response from a given target. To this end we have
determined the energy which would maximize the excitation probability for a given surface
mode and a wedge shape. In figure 10 we show the dependence of the excitation probability
for a given surface mode (ω = 13.6 eV) as a function of the beam kinetic energy (1 keV6
Ekin 6 100 keV) forα = 3π/2 (α∗ = π/2) and for various beam positions (the dotted, dashed,
solid, and dot–dashed lines correspond toγ = 3π/4,γ = 3π/8,γ = 3π/16, andγ = 3π/32,
respectively. The latter two have been divided by factors of 2 and 6, respectively). The beam
travels in vacuum at a distancea = 2 nm from the edge. It is evident that the excitation
probability first increases rapidly together with the beam energy, and after some value (which
grows together withγ ) slowly decreases. The plot is given for a 1–100 keV energy range and
for Ekin < 1 keV; however, our presumption of a rectilinear trajectory becomes questionable,
and we have not shown calculations below the 1 keV level. Also for the beam energy range
Ekin > 100 keV the retardation effects become important and a separate investigation is
required.

4. Conclusions

We have investigated here the case of a beam travelling parallel to the edge of a sharp-edged
wedge both in vacuum and through the medium. Other configurations, like beam trajectories
at constantz, trajectories intersecting the tip of the wedge, or reflecting at the lateral surface,
may also be of interest in the analysis of the experiments. Note also that the experiment has
been performed with a relatively broad probe,∼2 nm in diameter, which is comparable to the
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Figure 10. The excitation probability for given surface modeω = 13.6 eV as a function of the
electron beam kinetic energyEkin (1 keV6 Ekin 6 100 keV). The beam moves in the vacuum
parallel to the surface of the well-defined wedge (α = 3π/2 orα∗ = π/2), at a distance of 2 nm
from the edge. The dotted, dashed, solid, and dot–dashed lines correspond toγ = 3π/4,γ = 3π/8,
γ = 3π/16, andγ = 3π/32, respectively. The probabilities for the curves withγ = 3π/16 and
γ = 3π/32 have been divided by factors of 2 and 6, respectively.

distance from the beam to the wedge, whereas the calculations developed in this paper assume
a point-like STEM probe.

We have analysed the electron–wedge interaction in the electrostatic limit. The electron
beam energy (∼100 keV) is large enough that one may worry about the effect of retardation on
the theoretical predictions. This is currently being investigated (Nersisyan and Hovhannisyan
1999).

Finally, let us mention that the expressions derived for the excitation probability in (16)
and (19) can be used efficiently with moderate computing resources in practical data analysis.
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Appendix

Here we show that in the static limit (u → 0) from equations (2) and (4)–(9) follows the
expression for the potential of a charged particle located near the conducting (ε→∞) wedge
surface. For this we substituteω = κu in equation (2) in the limit ofu → 0. We find the
following expression (note that inside the conductor the potential is zero):

ϕ(ρ, θ, z) = 2q

π2

∫ ∞
0

dκ cos(κz)
∫ +∞

−∞
dµ Kiµ(κa)Kiµ(κρ)

×{cosh[µ(π − |θ − γ |)] + A(µ) cosh(µθ) +B(µ) sinh(µθ)} (A.1)
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whereA(µ) = Aω(µ), B(µ) = Bω(µ) atω → 0. Taking into account that for conductors
ε →∞ whenω → 0 (Landau and Lifshitz 1982), from equations (6)–(9) we can obtain the
following set of equations:

A(µ) = −cosh[µ(π − γ )] (A.2)

A(µ) cosh(µα) +B(µ) sinh(µα) = −cosh[µ(π − α + γ )]. (A.3)

By solving the set of equations (A.2) and (A.3) we find

ϕ(ρ, θ, z) = 4q

π2

∫ ∞
0

dκ cos(κz)
∫ +∞

−∞
dµ Kiµ(κa)Kiµ(κρ)C(µ) (A.4)

where

C(µ) = sinh(πµ)

cosh(αµ)
×
{

sinh(µγ ) sinh[µ(α − θ)] γ 6 θ 6 α
sinh[µ(α − γ )] sinh(µθ) θ 6 γ .

(A.5)

Calculating in equation (A.4) the integral overκ (Gradshteyn and Ryzhik 1980) we obtain the
following expression for the potential:

ϕ(ρ, θ, z) = q√
aρ

∫ +∞

−∞
dµ

tanh(πµ)

sinh(µα)
Piµ−1/2(coshη)

×
{

sinh(µγ ) sinh[µ(α − θ)] γ 6 θ 6 α
sinh[µ(α − γ )] sinh(µθ) θ 6 γ

(A.6)

wherePν(x) is the Legendre function of the first kind and with orderν = iµ− 1/2, and

coshη = ρ2 + a2 + z2

2aρ
. (A.7)

By using the known equation for the Legendre function of the second kindQν(x) (Gradshteyn
and Ryzhik 1980),

Q−iµ−1/2(z)−Qiµ−1/2(z) = π i tanh(πµ)Piµ−1/2(z) (A.8)

we can obtain

ϕ(ρ, θ, z) = q

π i
√
aρ

∫ +∞

−∞

dµ

sinh(µα)
Q−iµ−1/2(coshη)

×
{

sinh(µγ ) sinh[µ(α − θ)] γ 6 θ 6 α
sinh[µ(α − γ )] sinh(µθ) θ 6 γ.

(A.9)

It is convenient to use the integral representation of the Legendre function of the second kind
(Gradshteyn and Ryzhik 1980):

Q−iµ−1/2(coshη) =
∫ ∞
η

dζ exp(iζµ)√
2(coshζ − coshη)

. (A.10)

By using (A.10) the expression (A.9) can be written as

ϕ(ρ, θ, z) = q

α

√
2aρ

∫ ∞
η

dζ 8(ζ, θ)√
coshζ − coshη

(A.11)

where

8(ζ, θ) = 2
∞∑
n=1

exp

(
−πζn

α

)[
cos

(
πn
γ − θ
α

)
− cos

(
πn
γ + θ

α

)]
. (A.12)
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Finally, taking into account the expression (Gradshteyn and Ryzhik 1980)

2
∞∑
n=1

exp(−nα) cos(nβ) = −1 +
sinh(α)

cosh(α)− cos(β)
(A.13)

from (A.11)–(A.13) we can find the following expression for the potential given by Landau
and Lifshitz (1982):

ϕ(ρ, θ, z) = q

α

√
2aρ

∫ ∞
η

dζ sinh(πζ/α)√
coshζ − coshη

×
{

1

cosh(πζ/α)− cos[π(θ − γ )/α]
− 1

cosh(πζ/α)− cos[π(θ + γ )/α]

}
.

(A.14)

References

Bateman H and Erdelyi A 1977Higher Transcendental Functions(Moscow: Nauka)
Brandt W, Ratkowski A and Ritchie R H 1974Phys. Rev. Lett.331325
Chen C H, Joy D C, Chen H S and Hauser J J 1986Phys. Rev. Lett.57743
Cowley J M 1982aSurf. Sci.114587
Cowley J M 1982bPhys. Rev.B 251401
Davis L D 1976Phys. Rev.B 145523
Dobrzynsky L and Maradudin A A 1972Phys. Rev.B 6 3810
Echenique P M, Howie A and Wheatley D J 1987Phil. Mag.B 56335
Echenique P M and Pendry J B 1975J. Phys. C: Solid State Phys.8 2936
Ferrel T L and Echenique P M 1985Phys. Rev. Lett.551526
Garcia-Molina R, Gras Marti A and Ritchie R H 1985Phys. Rev.B 31121
Gradshteyn I S and Ryzhik I M 1980Table of Integrals, Series and Products(New York: Academic)
Illman B L, Anderson V E, Warmack R J and Ferrel T L 1988Phys. Rev.B 383045
Landau L D and Lifshitz E M 1982Electrodynamics of Continuous Media(Moscow: Nauka)
Marks L D 1982Solid State Commun.43727
Nersisyan H B and Hovhannisyan A V 1999 unpublished
Ritchie R H 1957Phys. Rev.106874
Rivacoba A, Zabala N and Echenique P M 1992Phys. Rev. Lett.693362
Roessler D M and Walker W C 1967Phys. Rev.159733
Walls M G and Howie A 1989Ultramicroscopy2840
Walsh C A 1989Phil. Mag.59227
Wheatley D I, Howie A and McMullan D 1983EMAG Conf. (Surrey)unpublished
Zabala N, Rivacoba A and Echenique P M 1989Surf. Sci.209465


